
Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Nicolas Alder 1 Ralf Herbrich 1

Abstract
The widespread use of artificial intelligence re-
quires finding energy-efficient paradigms for the
field. We propose to reduce the energy consump-
tion of Gaussian process regression using low-
precision floating-point representations. We ex-
plore how low-precision representations impact
the results of Gaussian process regression and
how data set properties, implementation approach,
model performance, and energy consumption in-
teract. Our findings show that a well-conditioned
kernel matrix allows reducing the energy con-
sumption by up to 89.01% for 98.08% of arith-
metic operations with little to no impact on model
performance. Our findings are relevant whenever
one needs to invert a symmetric full-rank matrix.

1. Introduction
To keep up with the massive increase in AI-related work-
load, it is essential to make improvements related to power
consumption (Debus et al., 2023). In this study, we suggest
using low-precision Gaussian process regression (GPR) as
a means of decreasing the power consumption of this AI
method. GPR is typically used for small data sets where the
prediction of uncertainty is of key importance. Enhancing
the efficiency of these routine tasks has the potential to gen-
erate significant overall power savings. We investigate the
connection between Gaussian process regression, arbitrary
low-precision utilization, and power consumption.

Gaussian process regression is a mature model and a power-
ful tool for regression. The model (Rasmussen & Williams,
2006) has been widely adopted, as evidenced by its recep-
tion in the academic community and its inclusion in many
libraries for industry use.

We propose low-precision Gaussian processes to reduce the
power consumption of Gaussian process regression. While

1Hasso Plattner Institute, Potsdam, Germany. Correspon-
dence to: Nicolas Alder <nicolas.alder@hpi.de>, Ralf Herbrich
<ralf.herbrich@hpi.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

previous research (Maddox et al., 2022) has investigated the
use of half-precision representations to fit large data sets,
our focus is on implementing arbitrary precisions for typical
library users that collectively contribute to power consump-
tion. Our evaluation therefore concentrates on small-sized
datasets that make up the large amount of daily workloads
that these libraries perform. Adapting libraries to our ap-
proach can lead to significant efficiency gains and power
reduction. Our low-precision approach can be directly uti-
lized by many processors and GPUs that have inherent abil-
ities to use smaller floating-point representations through
SIMD or other native hardware implementations without
the need for special hardware. For CPU-based implementa-
tions, high-level libraries like scikit-learn use LAPACK and
BLAS for efficient, hardware-specific operations written in
Fortran. These implementations, optimized for processors,
support basic linear algebra and higher-level operations (e.g.,
Cholesky decomposition) and can be adapted or extended
with a similar effort as current traditional methods. GPU-
based libraries benefit from various native low-precision
formats, making CUDA implementations straightforward.
FPGAs can accommodate any arbitrary format in imple-
mentations. Finally, this work encourages chip designers to
recognize that numerous applications benefit from adaptable
numerical formats. However, low-precision floating-point
representations can accumulate large round-off errors. De-
termining the appropriate low-precision representation is a
non-trivial task, as the algorithm implementation, the chosen
kernel, the specific data set, and the desired model perfor-
mance interact with a specific numerical representation. It
is not known what precision to use for reasonable model
performance. Existing work from numerical linear alge-
bra provides theory-guided upper error bounds of specific
arithmetic operations and even subtasks in Gaussian pro-
cess regression. However, the complexity of what precision
delivers a reasonable model performance in an end-to-end
perspective for Gaussian process regression with real data
is only feasible through an empirical evaluation.

For Gaussian process regression using Cholesky decom-
position, we achieved a power reduction of up to 88.94%
for 83.27% to 87.43% of all operations compared to using
double-precision floating-point representations. When us-
ing conjugate gradients, we achieved a decrease of up to
89.01% in energy consumption for 96.96% to 98.08% of

1

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

all operations. Using low-precision representations leads to
less than ±0.02 deviation in root mean squared error of the
test set and less than ±0.04 deviation on the train set. The
uncertainty calibration changes by less than ±0.03.

Our contributions can be summarized as follows:

1. We evaluate the use of arbitrary low-precision floating-
point number representations for reducing power con-
sumption in Gaussian process regression.

2. We demonstrate that the energy usage of Gaussian pro-
cess regression can be significantly decreased by utiliz-
ing low-precision representations, without compromis-
ing the model’s performance. Our findings indicate a
necessary minimum precision for model performance
that depends on the condition number of the kernel
matrix. Numerical instabilities at higher precisions
can be alleviated by using larger exponents instead of
increasing precision. This is also relevant for stabiliz-
ing computations when scaling Gaussian processes to
larger datasets with high condition numbers. However,
this paper does not focus on scaling, but on small-sized
data.

3. We measure power at the circuit level instead of per-
forming system-level benchmarks, providing platform-
independent relative power savings.

4. We provide an energy-efficiency method for inverting
symmetric full-rank matrices using conjugate gradients
or Cholesky decomposition.

All source code is available at https://github.com/
nicolas-alder/energy-efficient-gps

2. Related Work
2.1. Scalable Gaussian Process Regression

Gaussian process regression is often implemented with the
Cholesky decomposition to calculate the inverse of its ker-
nel matrix. However, the cubic complexity of the Cholesky
decomposition prohibits the use of Gaussian process re-
gression for large data sets. The field of scalable Gaussian
process regression efficiently combines hardware, approxi-
mation, and stochastic concepts to push computational limits
for large datasets (Titsias, 2009; Wilson & Nickisch, 2015;
Pleiss et al., 2018; Gardner et al., 2018; Wang et al., 2019;
Maddox et al., 2022). This field is not focused on energy
consumption, but on computational effort savings and distri-
bution for large datasets. However, these two goals can be
related. A recent study by Maddox et al. (2022) found that a
modified half-precision conjugate gradients algorithm often
produces comparable predictive means. In addition to the

Cholesky decomposition approach, we also included Mad-
dox et al.’s modified conjugate gradients algorithm (2022)
in our evaluation.

2.2. Numerical Linear Algebra

Upper round-off error bounds are known for floating-point
representations and corresponding arithmetic operations.
Numerous works (Martin et al., 1965; Wilkinson, 1966;
Meinguet, 1983; Kiełbasiński, 1987; Sun, 1992; Higham,
1990) have been published since the 1950s to examine
bounds for the Cholesky decomposition. Recent work also
investigated the conjugate gradients method (Greenbaum
et al., 2021). Although this research provides important
information about the error ingredients for empirical evalua-
tion, the worst-case bounds are not specific enough to guide
the construction of real-world Gaussian process models.

2.3. Efficient Hardware Acceleration

Certain frameworks are designed to focus specifically
on Gaussian processes and allow efficient GPU utiliza-
tion (Gardner et al., 2018; Matthews et al., 2017). Further-
more, due to low energy consumption and the possibility of
highly efficient special-purpose design, a whole community
has been focused on efficient linear algebra operations and
algorithms in FPGAs (Gonzalez & Núñez, 2009; Yang et al.,
2010; Roldao & Constantinides, 2010; Korcyl & Korcyl,
2019; Naher et al., 2019; Malakonakis et al., 2022; Song
et al., 2022; 2023). We also use the design-flexibility and
instrumentation options of an FPGA for the power consump-
tion measurements. In contrast to the aforementioned works,
our goal is to measure the relative power savings achieved
by implementing arithmetic operations at the circuit level,
without being specific to any particular hardware platform.
Compared to specialized hardware accelerators, we assume
that improving algorithms for arithmetic operations (and cor-
responding circuits) rather than specific platforms is more
enduring. Thus, savings apply to any generic platform that
uses the respective circuits.

3. Approach
This section presents the necessary ingredients for our ap-
proach: the Gaussian process model, low-precision repre-
sentations, and assumptions for the power benchmark.

3.1. Gaussian Process Regression

We investigate Gaussian process regression f(x) ∼
GP(m(x), cov(x,x′)) with noise-free data y = f(x) for
an input vector x with mean m(x) = 0 according to the def-
inition of Rasmussen and Williams (Rasmussen & Williams,
2006). The covariance cov(x,x′) = k(x,x′) is often given

2

https://github.com/nicolas-alder/energy-efficient-gps
https://github.com/nicolas-alder/energy-efficient-gps

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

by the Radial Basis Function (RBF)

kRBF(x,x
′) = σ2

output scaleexp
(
−||x− x′||2

2l2

)
. (1)

For a matrix of training features X , training target vector y
and test feature matrix X∗, we obtain the predictive mean
vector f̄∗ by

f̄∗ ≜ E[f∗|X,y, X∗] = KX∗,X [KX,X]−1y (2)

and predictive covariance matrix cov(f∗) by

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X]−1KX,X∗ , (3)

where KX,X̃ is a matrix of covariances k(x, x̃) for all x in
X and x̃ in X̃ , respectively.

In addition to matrix multiplication and subtraction, inver-
sion of the quadratic kernel matrix [KX,X]−1 is the most
expensive operation of Gaussian process regression. Re-
formulated as a system of linear equations, it is commonly
implemented by solving the Cholesky decomposition in
O(n3) for KX,X ∈ Rn×n. Then forward and backward
substitution is applied in O(n2) for each desired matrix-
vector product. The Cholesky decomposition is a type of
LU factorization, where U = LT . It exploits the symmetry
and positive definiteness of the kernel matrix and decom-
poses the kernel matrix K into a lower triangular matrix L
and an upper triangular matrix LT , such that L · LT = K.

We use the Cholesky-Banachiewicz algorithm (Ba-
nachiewicz, 1938) to build the lower triangular matrix row
by row. Each lower triangular element is derived by first
taking the equivalent element from the original matrix. If it
is a diagonal element, we subtract the sum of the squared
elements in the same row of L left to the diagonal element
before taking the square root of the term. If it is not a diag-
onal, we subtract the sum of the products of each element
of the same row to the left of L and the element of the
same column from the above row. We divide the term by
the diagonal element of the same column. Intuitively, this
process is sometimes compared to completing the square for
polynomials or calculating the square root of a matrix. The
vast amount of arithmetic operations consists of multiplica-
tions and additions and depends on the size of the kernel
matrix. We apply the Cholesky decomposition according to
Rasmussen & Williams (2006).

Alternatively, the conjugate gradients method can be em-
ployed to numerically solve for the matrix-vector product of
the linear system of equations. The inverse matrix product
is estimated iteratively, resulting in computational savings
that depend on the number of iterations required to achieve
an acceptable approximation. This approach was previ-
ously employed by Maddox et al. (2022) for half-precision

Gaussian processes to enable the processing of very large
datasets. Furthermore, they modified the conjugate gradient
algorithm to be more robust against round-off errors. First,
they reduced the chance of exponent overflows by rescal-
ing the kernel matrix-vector multiplications. Second, they
applied the logsumexp trick to the step size and conjugacy
terms to improve round-off error in calculations (smaller ab-
solute values computed with higher precisions in float-point
formats) and to reduce overflows. Third, they reorthogo-
nalized the residual vector with respect to previous residual
vectors in each iteration to address round-off impact. To-
gether with the Choleyky decomposition, we included their
modified version of the conjugate gradients algorithm in our
evaluation. The Appendix provides a detailed discussion
of both algorithms, including pseudocode and error bounds
derived from numerical linear algebra.

3.2. Low-Precision Floating-Point Representations

Gaussian process regression is commonly implemented with
64-bit double-precision floats according to the IEEE-754
standard. Consequently, a sign bit ±, a significand with t
precision bits d1, d2, . . . , dt, and an exponent e with bias
b = 2e−1 − 1 constitute a normalized floating-point repre-
sentation of x via

x = ±2e−b · d1.d2...dt, (4)

where
di ∈ {0, 1} and d1 = 1. (5)

The IEEE double-precision format uses a total of t = 53 bits
for precision, one bit being implicit due to normalization,
and 11 bits for the exponent. The precision component deter-
mines the smallest unit between two real numbers that can
be represented in the calculations. When the actual value
deviates from its representation, a round-off error occurs.
In terms of relative error, double-precision has a maximum
round-off of 2−52. The exponent component determines the
range of a represented number. However, as real numbers
of larger magnitude still have the same number of precision
bits to represent this range, the potential for absolute error
increases due to the uneven spacing between neighboring
representations. With every arithmetic operation, a new
round-off error might be introduced and accumulates. The
IEEE standard specifies round-ties-to-even that cancel the
round-off error for a Gaussian error distribution in expecta-
tion. The presence of normally distributed errors (of equal
magnitudes) is therefore critical for employing lower preci-
sions as they directly correspond to round-off accumulation
and performance degradation.

Accumulated round-off errors caused by low-precision com-
putations can have a significant impact on the performance
of Gaussian process regression. This can result in a notice-

3

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

able difference between the predictive mean and the covari-
ance compared to calculations done with double-precision.
Additionally, large round-off errors can make intermediate
results unstable and cause them to fail, potentially leading
to overflow.

Although the works (Martin et al., 1965; Greenbaum et al.,
2021) from numerical linear algebra do not guide the selec-
tion of a specific precision for the Cholesky decomposition
or conjugate gradient, they offer information on what has
an impact on the accumulated error. The eventual error in
our Gaussian process model is influenced by various factors,
including the precision, the size of the kernel matrix (i.e.,
the size of the training data) and the conditioning of the ker-
nel matrix. It is important to note that a larger kernel matrix
does not necessarily result in worse conditioning. However,
in our preliminary experiments, we observed that condition
numbers tend to increase for larger sampling sizes of the
same data set. Additionally, the conditioning of a kernel
matrix is highly dependent on the specific characteristics of
the data set and the kernel function used, as well as its hy-
perparameters. To understand these complex relationships,
we employed an empirical evaluation approach, where we
assessed the effects of the low-precision methodology.

3.3. Energy Consumption

To determine power consumption and potential savings in a
generic and platform-independent manner, we focused on
comparing relative reductions rather than absolute values.
During our experiments, we counted the arithmetic opera-
tions that were performed while fitting the training data and
during the inference phase. We then established a relation-
ship between these operations and the power consumption
of the corresponding arithmetic circuits, taking into account
the precision used. To determine the extent of power savings,
we performed a benchmark of the energy usage of simplified
arithmetic circuits at different precision levels at the circuit
level. Simplified refers to the implementation of integer-
based circuits as they exhibit the same scaling properties as
their complex IEEE floating-point counterparts. Given that
the majority of operations in Gaussian process regression
involve addition and multiplication or can be traced back
to it, we focused on implementing these two operations on
circuits and measuring their power consumption.

We implement a Carry-Ripple Adder circuit (by using a 2s
complement, subtraction is equivalent to using an addition
circuit). The state machines used in (non-)restoring division
and add-and-shift multiplication have very similar designs
and exhibit the same scaling properties. For simplicity, we
assume that the power consumption of all other operations
is independent of a numeric representation. Thus, we can
assign any numerical operation in GPR to addition, multi-
plication, division, or being constant (not optimized). The

energy reduction is the weighted mean of the power mea-
surements for a representation, depending on the fraction of
additions/subtractions and multiplications/divisions.

As we only benchmark arithmetic operations, our measure-
ments do not include power consumption for memory trans-
fer and bus traffic. The circuit size complexity of an arith-
metic circuit is a significant factor in determining its relative
power consumption, since it quantifies the resources based
on the size of the numeric representation. Therefore, the
choice of circuit design can impact potential power savings.
Although alternative circuit designs might be employed in
practical hardware, our method remains advantageous as
long as the overall resource demands (circuit-size or re-
quired cycles) are minimized by using smaller formats. Our
addition and multiplication circuits have linear complexity,
which represents very moderate scaling. Although hardware
manufacturers do not disclose their circuit designs, many
modern designs exhibit quadratic or higher complexities.
Therefore, our measurements only represent a conservative
estimate of power savings; it is likely that the actual power
savings are higher than what we report here.

4. Experimental Setup
Our experimental setup includes software-based experi-
ments for estimating performance and tracking arithmetic
operations, as well as hardware-based experiments for
benchmarking power consumption of arithmetic operations.

4.1. Software Benchmarks

We utilized the GMPY21 library to implement Gaussian
process regression in Python, which supports arbitrary-
precision floating-point representations. All operations
within Gaussian process regression were wrapped to moni-
tor the number of calls made.

We selected six different regression datasets for experimen-
tation. Five of them were arbitrarily chosen from the Penn
Machine Learning Benchmark (Romano et al., 2021) to
include diverse dataset properties. The sixth dataset, the
California Housing dataset (Pedregosa et al., 2011), was
specifically chosen to introduce a dataset that produces a
very ill-conditioned kernel matrix. Although our analysis
is restricted to the selected datasets and their characteris-
tics, exploratory testing on additional datasets aligned with
our findings and suggests that the condition number is a
crucial metric for understanding the relationship between
model performance and the minimum precision that can
be used for the algorithms. In typical library workflows,
the RBF length-scale hyperparameter is often automatically
determined and is crucial for the performance and learning
capabilities of the resulting model. To ensure the validity of

1www.mpfr.org

4

www.mpfr.org

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

a real-world setting in our experiments, we used the BFGS
algorithm, which is also employed in scikit-learn, to deter-
mine the length-scale l in (1). The length-scale optimization
was performed with double precision and was not included
in our operations tracking. We assumed that the datasets
have an output variance of 1.

From each dataset, we have randomly drawn 500 samples as
a train set and 500 samples as a test set. For each dataset, we
evaluated mantissa precisions with t = 3, 4, . . . , 8 in one-
bit increments and 14, 24, 34, 44, 53 in 10 bit increments
up to double-precision. The exponent e was always kept
at 11-bits. We repeated every experiment fives times and
reported means and standard deviations. The differences
reported refer to means. Equally, the conditioning of the
kernel matrix is reported as most computations occur in the
kernel matrix inversion. If not all five experiment repetitions
are successful due to instability, we additionally report the
number of successful experiment repetitions.

We performed 20 iterations to compute the predictive mean
using the conjugate gradient approach. For the predictive
covariance of each test point, we used 5 iterations. In the
case of the ill-conditioned California Housing dataset, we
used 100 iterations for the predictive mean. The number
of iterations was determined by conducting exploratory ex-
periments in double-precision, and we chose the minimum
number of iterations that produced reasonable performance.

To evaluate the performance of the predictive mean model,
we use the root mean squared error (RMSE)

RMSE(y, ŷ) =

√√√√ n∑
i=1

(ŷi − yi)2

n
, (6)

with n being the number of test points and ŷi representing
the model’s prediction compared to the ground truth yi.

The predictive (co)variance provides an estimate v̂ of how
uncertain the model predictions are. To assess the quality
of the uncertainty estimates, we propose a metric that evalu-
ates different confidence interval levels (ranging from 1 to
99) against the fraction of actual hits in the test data. The
deviation from the perfect calibration is then averaged to
arrive at the uncertainty calibration (UC) for the test point
predictions ŷ, v̂, when the actual values are y:

UC(y, ŷ, v̂) =
99∑
c=1

∣∣∣∣∣ c

100
− 1

n

n∑
i=1

I
(
−zc ≤

yi − ŷi√
v̂i
≤ zc

)∣∣∣∣∣ . (7)

The confidence boundaries are obtained by multiplying the
standard deviation of a test prediction’s covariance v with
the z-score zc for a respective confidence level c.

4.2. Hardware Benchmarks

The power consumption was measured by implementing an
add-and-shift multiplier circuit and Carry-Ripple adder cir-
cuit in VHDL on an FPGA core. The FPGA board contained
a dedicated power rail solely for the core and an onboard
power measurement chip. We used a Digilent Genesys2
with Xilinx Kintex-7 (XC7K325T-2FFG900C) FPGA-Core
and Texas Instruments INA219 chip as power monitor.

We carried out experiments to measure the power consump-
tion depending on the precision of our arithmetic circuits.
In order to ensure that our experiments are comparable and
meaningful, we utilized a fixed-size pseudorandom (deter-
ministic) uniform input distribution for the circuits. This in-
put distribution emulates the inputs of the arithmetic circuits.
It is important to note that the input distribution and the or-
der of the sequential inputs can affect power consumption.
If the input numbers are too close to each other, fewer capac-
itors may be loaded or released, leading to a different power
consumption measure. To prevent such correlated power
footprints, we ensured a uniform and constantly changing
input distribution. We have developed circuits that operate
using a clocked signal instead of being combinatorial. This
ensures that an equal number of arithmetic operations are
performed in each experiment, enabling meaningful compar-
isons between them. We implemented multiple arithmetic
circuits in parallel to achieve a measurable power differ-
ence. We separately benchmarked our experimental setup,
which included a bus system, a memory interface, and a
microprocessor to read the power measurement registers.
The power measurements have been adjusted to remove the
power consumption of the experimental setup, reflecting
only the arithmetic circuits’ operations. Due to the labor-
intensive nature of the experiments, we physically measured
bit-size representations of 4, 14, 24, 34, 44, 53, 54, and 64
bits. In the software-based experiments, we always use a
fixed level of precision. To link this precision with the power
consumption measured in hardware experiments, we used a
linear regression approach. This approach is reasonable due
to the linear circuit-size complexity, as depicted in Figure 1.
We always use a double-precision reference representation
(53-bits) for comparison.

5. Results
This section begins by presenting the conditioning of the
kernel matrices that we obtained for our datasets. We pro-
ceed to analyze the performance measures in relation to
three observed phenomena: the necessary minimum preci-
sion, computational stability, and power consumption. The
experimental results for this section are presented in Ta-
bles 1 for the conjugate gradient and 2 for the Cholesky
decomposition approach. The complete results are in the
Appendix.

5

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Table 1. The impact of low-precision numeric representations on energy consumption and model performance in Gaussian Process
Regression with conjugate gradient implementation. The table includes selected results: lowest precision with stable computations,
lowest precision with competitive (bold) performances (∆ UC, Train and Test RMSE), and double-precision. California Housing (ch)
experiments are listed in full. Brackets in Precision column indicate the number of stable experiments to total experiments.

C
on

ju
ga

te
G

ra
di

en
t

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
3 10± 3 0.50 0.03 −0.14 −98.38%

fr 8 9± 1 0.01 0.00 0.00 97.99% −89.01%
53 9± 1 - - - -

3 (2/5) 80± 37 56.08 49.27 0.64 −98.38%
wn 8 65± 11 0.04 0.01 −0.02 97.88% −89.01%

53 79± 40 - - - -
4 96± 13 0.88 0.50 −0.28 −91.21%

st 8 149± 36 0.02 0.01 −0.01 97.27% −88.98%
53 152± 54 - - - -

3 (4/5) 131± 26 1.53 0.89 −0.23 −98.38%
mv 8 146± 63 0.02 0.01 −0.01 97.99% −89.01%

53 220± 190 - - - -
4 (4/5) 6, 758± 2, 368 4.17 3.34 −0.07 −91.20%

pl 8 8,274± 5,364 0.04 0.00 −0.03 96.96% −88.97%
53 10, 842± 8, 206 - - - -

4 (1/5) 1, 156, 326± 0 144.37 144.82 0.59 −91.25%
5 (4/5) 3, 483, 705± 1, 927, 678 2.82 2.77 0.33 −94.64%
14 3,394,682± 2,659,590 −0.03 −0.02 0.01 98.08% −75.99%

ch 24 (4/5) 3, 647, 790± 2, 357, 889 −0.03 0.00 −0.01 −70.19%
34 (4/5) 2, 878, 770± 1, 136, 307 −0.02 −0.01 0.00 −40.11%

44 2, 526, 487± 1, 514, 300 −0.03 0.01 −0.01 −22.22%
53 4, 818, 647± 3, 902, 685 - - - -

5.1. Kernel Matrix Conditioning

The performances and stability of the experiments are
largely influenced by the conditioning of the kernel matrix,
since most arithmetic operations in the Gaussian process
regression are part of the kernel matrix inversion. Listed
in Tables 1 and 2 are results for the datasets Fried (fr),
Wind (wn), and Satellite (st) which are well conditioned
(a condition number less than or equal to 1e3), Pol (pl)
which is moderately conditioned (a condition number of less
than or equal to 2e4), and California Housing (ch) which
is ill-conditioned (a condition number of less than or equal
to 1e7). Experiments with good conditioning consistently
allowed us to use lower precisions without reducing the
model performance or only observing minor effects, while
ill-conditioned kernel matrices needed higher precisions for
competitive performances or displayed numerical instabili-
ties. The ’pl’ dataset showed mixed behavior, depending on
the implementation approach used.

We report the differences ∆ in Tables 1 and 2 for RMSE on
the train and test set and the uncertainty calibration on the
test set only. The RMSE on the train set can be interpreted
as an indicator of how close the computational result of a
precision is to double-precision. The RMSE and uncertainty

calibration deliver information if a numeric offset is also
translated into test set error, which is most relevant in real-
world settings.

5.2. Minimum precision

The experiments showed that both the Cholesky decomposi-
tion and conjugate gradient implementation approaches pro-
duce unstable computations and significantly worse model
performance when precision is too low. When the precision
met a minimum threshold (cf. bold precisions in Tables 1
and 2), the model’s performance showed minimal or no dif-
ference compared to calculations at double-precision. The
minimum precision threshold depends on the approach used
for implementation and the conditioning of a dataset’s ker-
nel matrix. The data set, the chosen kernel (RBF), and the
hyperparameters (optimized through BFGS) significantly
influence the conditioning of the kernel matrix. Interest-
ingly, our experiments showed that both implementation
approaches required a minimum precision of 8 bits for well-
conditioned matrices (cf. bold 8 bit precisions in Table 1
and 2). Interestingly, sometimes even RMSE even improved,
possibly through implicit regularization. The RMSE differ-
ences on the train set were also low (≤ 0.04). The uncer-

6

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Table 2. The impact of low-precision numeric representations on energy consumption and model performance in Gaussian Process
Regression with Cholesky decomposition implementation. The table includes selected results: lowest precision with stable computations,
lowest precision with competitive (bold) performances (∆ UC, Train and Test RMSE) and double precision. Brackets in Precision column
indicate the number of stable experiments to total experiments.

C
ho

le
sk

y
D

ec
om

po
si

tio
n

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
3 (4/5) 10± 2 0.12 0.04 −0.09 −98.30%

fr 8 9± 1 0.01 −0.02 0.01 87.02% −88.94%
53 9± 2 - - - -

3 (3/5) 57± 13 0.30 0.06 −0.15 −98.26%
wn 8 54± 11 0.02 −0.02 0.01 86.52% −88.90%

53 59± 9 - - - -
3 (4/5) 107± 7 0.27 0.07 −0.23 −98.06%

st 8 111± 24 0.02 −0.01 0.01 84.24% −88.73%
53 114± 20 - - - -

4 (4/5) 135± 39 0.13 0.00 −0.12 87.02% −91.16%
mv 8 192± 55 0.01 0.00 −0.01 87.02% −88.94%

53 127± 72 - - - -
14 25,093± 39,926 0.00 0.00 −0.01 83.27% −75.16%

pl 24 (4/5) 66, 100± 107, 969 0.00 0.00 0.00 −71.09%
53 (4/5) 12, 815± 10, 215 - - - -

24 4, 574, 294± 2, 490, 886 0.00 0.05 −0.01 −70.30%
ch 34 2,856,070± 1,929,682 0.00 0.01 −0.03 87.43% −40.02%

53 3, 222, 575± 1, 872, 118 - - - -

tainty calibration was maintained or improved (≤ 0.01).

We observe that even using 3-bit and 4-bit precision for
datasets ’fr’ and ’wn’ partly resulted in a reasonable test
set error (cf. Tables 1, 2 and Appendix). However, we
consider this not a robust approach as the train differences
are significantly higher (cf. ”∆ Train” in Table 2 for ’fr’ and
’wn’ with 3 bits precision).

When working with the ill-conditioned ’ch’ dataset, using
an 8-bit representation with conjugate gradients leads to
significantly more error compared to double-precision. For
a comparable model performance, at least 14 bits are nec-
essary. For Cholesky decomposition, 24 bits are sufficient
for numerically stable results, while 34 bits ensure com-
petitive model performance. Similar observations hold for
the ’pl’ dataset. When using conjugate gradients, 8 bits are
sufficient for reasonable performance, but with Cholesky
decomposition, 14 bits are the lowest usable precision, as 8
bits do not produce numerically stable computations.

In summary, the modified conjugate gradient approach sur-
passes the Cholesky decomposition in terms of exhibiting a
lower minimum precision required. We found that using sig-
nificantly lower precisions than double-precision resulted in
little to no performance degradation for both implementation
approaches and all kernel matrix conditionings. Sometimes,
generalization even improved due to implicit regularization.
Also, the effectiveness of using low-precision number rep-
resentations hints at the presence of Gaussian-distributed

errors that are compensated by round-ties-to-even.

5.3. Numerical Stability of Ill-Conditioned Datasets

Our experiments on the ’ch’ dataset using the conjugate gra-
dient approach demonstrate that higher condition numbers
reduce the numerical stability of experiments, leading to an
increase in overflows. We also find that precisions below the
minimum threshold result in unstable experiments or poor
model performance (as evidenced by 4 and 5-bit precisions
for the ’ch’ dataset in Table 1). Additionally, we observe
more numerical instabilities at higher precisions (as seen
with 24 and 34-bit precisions for ’ch’ dataset in Table 1).
Although demonstrating competitive model performance
once stabilized, these experiments indicate that instability
and performance have different underlying causes.

We increased the available exponent bits from 11 to 15 and
conducted additional experiments on the ’ch’ dataset with
conjugate gradient and the ’pl’ dataset with Cholesky de-
composition for unstable experiment precisions (cf. results
in the Appendix). As a result, most observed instabilities
disappeared. This indicates that precision is not the only fac-
tor contributing to unstable computations and round-ties-to-
even effectively mitigates round-off errors in computations
beyond the minimum precision. The ill-conditioning of the
kernel matrix leads to greater fluctuations in absolute val-
ues. Therefore, competitive results can be achieved by using
larger exponents. When working with large or highly ill-

7

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

0 4 14 24 34 44 53 64
Precision

0%
11%
29%
23%

64%
77%

100%

121%

Po
we

r C
on

su
m

pt
io

n

Carry-Ripple Adder Circuit

0 4 14 24 34 44 53 64
Precision

0%
5%

18%
35%
54%

78%

100%

128%

Po
we

r C
on

su
m

pt
io

n

Shift-and-Add Multiplier Circuit

Figure 1. Results of the power consumption benchmark for addition and multiplication circuits relative to 53-bit double-precision, showing
a linear power pattern in line with their circuit-size complexities. The power measurements were conducted on an FPGA-core.

conditioned datasets in (scalable) Gaussian process regres-
sion scenarios, this discovery holds particular significance.
Large datasets and ill-conditioned kernel matrices can cause
stability issues with double-precision calculations. However,
increasing the exponent can help address this problem and
result in more efficient processing compared to frequently
utilized larger precisions.

In summary, ill-conditioned kernel matrices can lead to
numerical instability, which can be efficiently addressed by
using larger exponents. However, the impact of precision
on stability is minor, as long as the minimum precision is
met. Again, this suggests normally distributed errors for
computations above the minimum precision. The use of
larger exponents, instead of larger precisions, is particularly
useful when efficiently scaling Gaussian processes for very
large or ill-conditioned datasets.

5.4. Power Consumption

Lowering the precision of calculations during kernel ma-
trix inversion using the conjugate gradient method can
lead to a significant reduction in energy consumption. For
well-conditioned datasets, this reduction can be as high as
89.01%, while for ill-conditioned datasets it can be up to
75.99%. This approach can reduce energy consumption for
96.96% to 98.08% of all operations involved in Gaussian
process regression. Utilizing Cholesky decomposition can
significantly reduce energy consumption by up to 88.94%
for well-conditioned datasets and 40.02% for ill-conditioned
datasets. However, the requirement of higher minimum pre-
cisions for the Cholesky decomposition approach results in
reduced relative power savings. The fraction of optimized
operations is slightly lower, comprising only 83.27% to
87.43% of all operations.

Figure 1 displays the benchmarking results for power con-
sumption for addition and multiplication. Both circuits show

a linear power consumption pattern, which is consistent with
the expected behavior for circuits with linear size complex-
ity. Anomalies in power consumption are observed in the
24-bit addition circuit, but these may be due to an efficient
compiler mapping to our FPGA core, rather than a general
rule. All other measurements for both circuits conform
closely to the regression line.

In summary, reducing precision in Gaussian process regres-
sion leads to lower power consumption for most arithmetic
operation calls. The relationship between precision and
power consumption is set by the circuit-size complexity of
arithmetic circuits. Although we opted for low-complexity
circuits in our study, real-world arithmetic circuits usu-
ally have quadratic or cubic complexities to achieve faster
throughput. Consequently, the associated power reductions
in such circuits would be considerably higher.

6. Conclusion
It is possible to perform Gaussian process regression using
floating-point operations with significantly lower precisions
than the commonly used double-precision. This can be
achieved without a significant decrease in predictive test per-
formance (less than or equal to 0.02 RMSE) or uncertainty
calibration (less than or equal to 0.03). Our experiments
have shown that this approach can result in substantial power
savings (up to 89.01%) for most operations (up to 98.08%).
Also, power savings are proportional to the complexity of
the utilized arithmetic circuit.

Based on our experiments, we have found that in order to
achieve comparable model performance to that of double-
precision, maintaining a minimum level of precision is nec-
essary. Our findings indicate that well-conditioned datasets
of small sizes require a minimum precision of 8 mantissa
bits. Ill-conditioned datasets need 34 mantissa bits.

8

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

We have observed that the minimum precision required is
heavily dependent on the condition number of the kernel
matrix. Large kernel matrix condition numbers can cause in-
stability problems, even when the minimum precision is met.
However, there is an effective way to mitigate these instabil-
ities by increasing the exponents instead of increasing the
precision, which is also more energy efficient. This method
is particularly helpful when dealing with large datasets or ill-
conditioned kernel matrices in Gaussian process regression.
Based on experimental results, there is evidence that com-
putations beyond the minimum precision follow a Gaussian
error distribution.

Our future research will investigate how the condition num-
ber is related to the error distribution. This will allow us to
further reduce the required minimum precision and enhance
the stability of ill-conditioned kernel matrix computations.
Furthermore, an automated method is needed to determine
the minimum required precision level based on the imple-
mentation and condition number, enabling easy adoption in
libraries.

Acknowledgements
The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the project KI-Servicezentrum Berlin Brandenburg
01IS22092.

Impact Statement
The aim of this research is to advance the field of Machine
Learning and tackle the problem of energy consumption and
energy-efficient approaches in AI. The potential societal im-
plications include a decrease in CO2 emissions and greater
accessibility to cost-effective products.

References
Banachiewicz, T. Méthode de résolution numérique des

équations linéaires, du calcul des déterminants et des in-
verses, et de réduction des formes quadratiques. Bulletin
International de l’Academie des Sciences de Pologne, pp.
393–401, 1938.

Bunch, J. and Kaufman, L. Some stable methods for cal-
culating inertia and solving symmetric linear systems.
Mathematics of Computation, 31(137):163–179, 1977.

Chronopoulos, A. and Gear, C. W. S-step iterative methods
for symmetric linear systems. Journal of Computational
and Applied Mathematics, 25(2):153–168, 1989.

Crout, P. A short method for evaluating determinants and
solving systems of linear equations with real or complex

coefficients. Electrical Engineering, 60(12):1235–1240,
1941.

Davies, A. Efficient Implementation of Gaussian Process Re-
gression for Machine Learning. PhD thesis, Department
of Engineering, University of Cambridge, 2005.

Debus, C., Piraud, M., Streit, A., Theis, F., and Götz, M.
Reporting electricity consumption is essential for sustain-
able ai. Nature Machine Intelligence, 5(11):1–3, 2023.

Gardner, J., Pleiss, G., Weinberger, K., Bindel, D., and Wil-
son, A. GPyTorch: Blackbox matrix-matrix Gaussian
process inference with GPU acceleration. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2018.

Ghysels, P. and Vanroose, W. Hiding global synchroniza-
tion latency in the preconditioned conjugate gradient al-
gorithm. Parallel Computing, 40(7):224–238, 2014.

Gibbs, M. and Mackay, D. Efficient implementation of gaus-
sian processes. Technical report, Cavendish Laboratory,
Cambridge, UK, 1997.

Golub, G. and Loan, C. Matrix Computations. JHU press,
4th edition, 2013.

Gonzalez, J. and Núñez, R. LAPACKrc: Fast linear alge-
bra kernels/solvers for FPGA accelerators. Journal of
Physics: Conference Series, 180(1):012042, 2009.

Gratton, S., Simon, E., Titley-Peloquin, D., and Toint, P.
Minimizing convex quadratics with variable precision
conjugate gradients. Numerical Linear Algebra with Ap-
plications, 28(1), 2021.

Greenbaum, A. Behavior of slightly perturbed lanczos and
conjugate-gradient recurrences. Linear Algebra and its
Applications, 113:7–63, 1989.

Greenbaum, A., Liu, H., and Chen, T. On the convergence
rate of variants of the conjugate gradient algorithm in
finite precision arithmetic. SIAM Journal on Scientific
Computing, 43(5):496–515, 2021.

Hestenes, M. and Stiefel, E. Methods of conjugate gradients
for solving linear systems. Journal of Research of the
National Bureau of Standards, 49(6):409–436, 1952.

Higham, N. Analysis of the Cholesky decomposition of a
semi-definite matrix. Reliable Numerical Computation,
pp. 161–185, 1990.

Higham, N. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics (SIAM),
2nd edition, 2002.

9

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Kiełbasiński, A. A note on rounding-error analysis of
Cholesky factorization. Linear Algebra and its Appli-
cations, 88-89:487–494, 1987.

Korcyl, P. and Korcyl, G. Implementation of the conjugate
gradient algorithm in lattice qcd on FPGA devices. Pro-
ceedings of the 36th Annual International Symposium
on Lattice Field Theory — PoS(LATTICE2018), 334:313,
2019.

Maddox, W., Potapcynski, A., and Wilson, A. Low precision
arithmetic for fast Gaussian processes. In Cussens, J. and
Zhang, K. (eds.), The 38th Conference on Uncertainty
in Artificial Intelligence, pp. 1306–1316. Proceedings of
Machine Learning Research, 2022.

Malakonakis, P., Isotton, G., Miliadis, P., Alverti, C.,
Theodoropoulos, D., Pnevmatikatos, D., Ioannou, A.,
Harteros, K., Georgopoulos, K., Papaefstathiou, I., and
Mavroidis, I. Preconditioned conjugate gradient accel-
eration on FPGA-based platforms. Electronics, 11(19):
3039–3054, 2022.

Martin, S., Peters, G., and Wilkinson, J. Symmetric de-
composition of a positive definite matrix. Numerische
Mathematik, 7(5):362–383, 1965.

Matthews, A., van der Wilk, M., Nickson, T., Fujii, K.,
Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., and
Hensman, J. GPflow: A Gaussian process library using
TensorFlow. Journal of Machine Learning Research, 18
(40):1–6, 2017.

Meinguet, J. Refined error analyses of Cholesky factor-
ization. SIAM Journal on Numerical Analysis, 20(6):
1243–1250, 1983.

Naher, J., Sakib, A., Jadhav, S., Gloster, C., and Doss, C. An
FPGA based implementation of the conjugate gradient
kernels. International Conference on Electrical Infor-
mation and Communication Technology (EICT), pp. 1–6,
2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(85):2825–2830, 2011.

Pleiss, G., Gardner, J., Weinberger, K., and Wilson, A.
Constant-time predictive distributions for Gaussian pro-
cesses. In Dy, J. and Krause, A. (eds.), Proceedings of the
35th International Conference on Machine Learning, pp.
4114–4123. Proceedings of Machine Learning Research,
2018.

Rasmussen, C. and Williams, C. Gaussian Processes for
Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, 2006.

Roldao, A. and Constantinides, G. A high throughput FPGA-
based floating point conjugate gradient implementation
for dense matrices. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 3(1):1–19, 2010.

Romano, J., Le, T., La Cava, W., Gregg, J., Goldberg, D.,
Chakraborty, P., Ray, N., Himmelstein, D., Fu, W., and
Moore, J. PMLB v1.0: an open-source dataset collection
for benchmarking machine learning methods. Bioinfor-
matics, 38(3):878–880, 2021.

Shewchuk, J. An introduction to the conjugate gradient
method without the agonizing pain. Technical report,
Carnegie-Mellon University, Pittsburgh, USA, 1994.

Song, L., Chi, Y., Guo, L., and Cong, J. Serpens: A high
bandwidth memory based accelerator for general-purpose
sparse matrix-vector multiplication. In Li, H. (ed.), Pro-
ceedings of the ACM/IEEE Design Automation Confer-
ence, pp. 211–216. Association for Computing Machinery
(ACM), 2022.

Song, L., Guo, L., Basalama, S., Chi, Y., Lucas, R. F., and
Cong, J. Callipepla: Stream centric instruction set and
mixed precision for accelerating conjugate gradient solver.
In Zhang, Z. (ed.), Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pp. 247–258. Association for Computing Machin-
ery (ACM), 2023.

Sun, J.-g. Rounding-error and perturbation bounds for the
Cholesky and ldlt factorizations. Linear Algebra and its
Applications, 173:77–97, 1992.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In van Dyk, D. and Welling,
M. (eds.), Proceedings of the Twelth International Confer-
ence on Artificial Intelligence and Statistics, pp. 567–574.
Proceedings of Machine Learning Research, 2009.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K.,
and Wilson, A. Exact Gaussian processes on a million
data points. Advances in Neural Information Processing
Systems, 32, 2019.

Wilkinson, J. A priori error analysis of algebraic processes.
In Proceedings of the International Congress of Mathe-
maticians, pp. 629–.640, 1966.

Wilson, A. and Nickisch, H. Kernel interpolation for scal-
able structured Gaussian processes (kiss-gp). In Bach,
F. and Blei, D. (eds.), Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pp. 1775–1784.
Proceedings of Machine Learning Research, 2015.

10

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Yang, D., Sun, J., Lee, J., Liang, G., Jenkins, D., Peterson,
G., and Li, H. Performance comparison of Cholesky de-
composition on GPUs and FPGAs. In Steffen, C. and Pe-
terson, G. (eds.), IEEE Symposium on Application Accel-
erators in High Performance Computing (SAAHPC’10).
Proceedings IEEE Computer Society Press, 2010.

11

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Appendix

A. Complete Experiment Results
The tables presented below exhibit the comprehensive results of all performed experiments.

Table 3. The impact of low-precision numeric representations on energy consumption and model performance for well-conditioned kernel
matrices in Gaussian Process Regression with conjugate gradient implementation. Brackets in Precision column indicate the number of
stable experiments to total experiments.

C
on

ju
ga

te
G

ra
di

en
t

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
3 10± 3 0.50 0.03 −0.14 −98.38%
4 11± 5 0.14 0.02 −0.06 −91.25%
5 8± 1 0.07 0.01 −0.03 −94.63%
6 9± 1 0.04 0.01 −0.01 −92.76%
7 11± 3 0.02 0.03 −0.03 −90.88%

fr 8 9± 1 0.01 0.00 0.00 97.99% −89.01%
14 10± 3 0.00 0.01 0.00 −75.98%
24 9± 1 0.00 −0.01 0.01 −70.20%
34 8± 1 0.00 0.01 −0.01 −40.10%
44 8± 1 0.00 0.01 −0.01 −22.22%
53 9± 1 - - - -

3 (2/5) 80± 37 56.08 49.27 0.64 −98.38%
4 56± 7 0.42 0.07 −0.14 −91.24%
5 60± 6 0.23 0.03 −0.08 −94.63%
6 49± 9 0.12 0.02 −0.04 −92.75%
7 56± 4 0.07 −0.02 −0.01 −90.88%

wn 8 65± 11 0.04 0.01 −0.02 97.88% −89.01%
14 62± 10 0.00 0.01 0.01 −75.97%
24 69± 22 0.00 0.03 −0.03 −70.21%
34 67± 23 0.00 0.00 −0.01 −40.09%
44 64± 16 0.00 0.01 −0.01 −22.22%
53 79± 40 - - - -
4 96± 13 0.88 0.50 −0.28 −91.21%
5 127± 35 0.24 0.04 −0.10 −94.60%
6 132± 42 0.12 0.02 −0.05 −92.73%
7 126± 25 0.06 0.01 −0.02 −90.85%
8 149± 36 0.02 0.01 −0.01 −88.98%

st 14 89± 9 −0.01 0.02 −0.01 97.27% −75.92%
24 128± 36 0.00 0.02 −0.02 −70.27%
34 103± 11 −0.01 0.01 0.00 −40.04%
44 117± 42 −0.01 0.01 −0.01 −22.23%
53 152± 54 - - - -

3 (4/5) 131± 26 1.53 0.89 −0.23 −98.38%
4 116± 48 0.17 0.01 −0.12 −91.25%
5 116± 30 0.13 −0.01 −0.05 −94.63%
6 131± 32 0.07 0.00 −0.02 −92.76%
7 142± 58 0.04 0.00 0.00 −90.88%

mv 8 146± 63 0.02 0.01 −0.01 97.99% −89.01%
14 111± 32 0.00 −0.01 0.01 −75.98%
24 102± 23 0.00 0.00 0.00 −70.20%
34 113± 22 0.00 0.01 0.00 −40.10%
44 142± 126 0.00 0.01 0.00 −22.22%
53 220± 190 - - - -

12

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Table 4. The impact of low-precision numeric representations on energy consumption and model performance for ill-conditioned kernel
matrices in Gaussian Process Regression with conjugate gradient implementation. Brackets in Precision column indicate the number of
stable experiments to total experiments.

C
on

ju
ga

te
G

ra
di

en
t

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
4 (4/5) 6, 758± 2, 368 4.17 3.34 −0.07 −91.20%
5 (4/5) 12, 428± 10, 904 0.68 0.40 −0.17 −94.59%

6 12, 242± 7, 638 0.46 0.16 −0.18 −92.71%
7 23, 176± 31, 356 0.24 0.07 −0.11 −90.84%
8 8, 274± 5, 364 0.04 0.00 −0.03 −88.97%

pl 14 13, 214± 7, 143 0.00 0.00 0.01 96.96% −75.89%
24 14, 396± 13, 138 0.00 0.02 −0.01 −70.30%
34 14, 203± 10, 190 0.00 0.01 0.00 −40.02%
44 10, 515± 6, 054 0.00 −0.01 0.02 −22.23%
53 10, 842± 8, 206 - - - -

4 (1/5) 1, 156, 326± 0 144.37 144.82 0.59 −91.25%
5 (4/5) 3, 483, 705± 1, 927, 678 2.82 2.77 0.33 −94.64%

6 3, 336, 051± 1, 697, 860 1.38 1.29 0.10 −92.76%
7 5, 423, 509± 3, 604, 730 0.58 0.57 −0.06 −90.89%
8 3, 845, 724± 1, 986, 413 0.16 0.14 −0.25 −89.01%

ch 14 3, 394, 682± 2, 659, 590 −0.03 −0.02 0.01 98.08% −75.99%
24 (4/5) 3, 647, 790± 2, 357, 889 −0.03 0.00 −0.01 −70.19%
34 (4/5) 2, 878, 770± 1, 136, 307 −0.02 −0.01 0.00 −40.11%

44 2, 526, 487± 1, 514, 300 −0.03 0.01 −0.01 −22.22%
53 4, 818, 647± 3, 902, 685 - - - -

13

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Table 5. The impact of low-precision numeric representations on energy consumption and model performance for well-conditioned kernel
matrices in Gaussian Process Regression with Cholesky decomposition implementation. Brackets in Precision column indicate the number
of stable experiments to total experiments.

C
ho

le
sk

y
D

ec
om

po
si

tio
n

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
3 (4/5) 10± 2 0.12 0.04 −0.09 −98.30%

4 9± 1 0.10 0.02 −0.06 −91.16%
5 12± 6 0.06 −0.02 0.01 −94.56%
6 9± 1 0.04 0.00 −0.02 −92.68%
7 10± 4 0.02 0.00 −0.01 −90.81%

fr 8 9± 1 0.01 −0.02 0.01 87.02% −88.94%
14 9± 2 0.00 −0.02 0.01 −75.82%
24 9± 1 0.00 0.00 0.00 −70.37%
34 9± 2 0.00 −0.01 0.00 −39.96%
44 8± 1 0.00 −0.01 0.01 −22.23%
53 9± 2 - - - -

3 (3/5) 57± 13 0.30 0.06 −0.15 −98.26%
4 59± 7 0.18 0.00 −0.07 −91.12%
5 69± 16 0.11 0.01 −0.03 −94.52%
6 61± 14 0.06 −0.03 0.01 −92.65%
7 59± 13 0.03 −0.04 0.01 −90.77%

wn 8 54± 11 0.02 −0.02 0.01 86.52% −88.90%
14 54± 7 0.00 −0.01 0.00 −75.74%
24 62± 6 0.00 0.01 −0.01 −70.47%
34 65± 12 0.00 0.00 −0.01 −39.89%
44 59± 11 0.00 0.02 −0.03 −22.24%
53 59± 9 - - - -

3 (4/5) 107± 7 0.27 0.07 −0.23 −98.06%
4 (4/5) 108± 16 0.15 0.03 −0.15 −90.91%

5 103± 25 0.10 0.02 −0.08 −94.33%
6 108± 22 0.05 0.01 −0.04 −92.46%
7 101± 35 0.03 0.01 −0.02 −90.59%

st 8 111± 24 0.02 −0.01 0.01 84.24% −88.73%
14 114± 33 0.00 0.00 0.00 −75.34%
24 114± 20 0.00 0.00 0.00 −70.90%
34 112± 4 0.00 0.00 0.01 −39.54%
44 117± 22 0.00 0.01 −0.01 −22.27%
53 114± 20 - - - -

4 (4/5) 135± 39 0.13 0.00 −0.12 −91.16%
5 142± 69 0.08 0.02 −0.07 −94.56%
6 239± 190 0.05 0.00 −0.03 −92.68%
7 187± 49 0.03 −0.01 −0.02 −90.81%
8 192± 55 0.01 0.00 −0.01 −88.94%

mv 14 106± 16 0.00 0.00 −0.01 87.02% −75.82%
24 130± 9 0.00 −0.01 0.00 −70.37%
34 111± 23 0.00 0.00 0.00 −39.96%
44 126± 82 0.00 0.00 −0.01 −22.23%
53 127± 72 - - - -

14

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Table 6. The impact of low-precision numeric representations on energy consumption and model performance for ill-conditioned kernel
matrices in Gaussian Process Regression with Cholesky decomposition implementation. Brackets in Precision column indicate the number
of stable experiments to total experiments.

C
ho

le
sk

y
D

ec
om

po
si

tio
n

Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
14 25, 093± 39, 926 0.00 0.00 −0.01 −75.16%

24 (4/5) 66, 100± 107, 969 0.00 0.00 0.00 −71.09%
pl 34 36, 038± 49, 516 0.00 0.00 0.00 83.27% −39.38%

44 37, 817± 41, 484 0.00 0.00 0.01 −22.28%
53 (4/5) 12, 815± 10, 215 - - - -

24 4, 574, 294± 2, 490, 886 0.00 0.05 −0.01 −70.30%
34 2, 856, 070± 1, 929, 682 0.00 0.01 −0.03 −40.02%

ch 44 3, 802, 740± 1, 775, 298 0.00 −0.02 −0.03 87.43% −22.23%
53 3, 222, 575± 1, 872, 118 - - - -

15

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

B. Results of the Experiments With Larger Exponents
The results of the experiments in the following table explored the impact of increasing the number of exponent bits from
11 to 15 on achieving stable results. Our investigation focused on discerning whether the precision or absolute range of
the exponent was more crucial for stability. Precision levels below the minimum precision continued to show the same
instability: 4 and 5 bits for the ’ch’ dataset and 3 to 8 bits for the ’pl’ dataset. Precisions above the minimum precision
benefited from the larger exponents with stable results at 24 and 53 bits for the ’pl’ dataset using Cholesky decomposition,
and at 34 bits for the ’ch’ dataset using the conjugate gradient method. However, 24 bits with the conjugate gradient on the
’ch’ dataset remained unstable. These patterns of stability and instability were reproducible in repeated trials with random
draws.

Table 7. The impact of using low-precision numeric representations with exponent bits set to 15 instead of 11. Experiments were
performed on the ill-conditioned kernel matrices from the ’pl’ and ’ch’ datasets for previously unstable experiment settings.

Approach Data Precision Conditioning ∆ Train ∆ Test ∆ UC % Operations ∆ Energy
4 (1/5) 1, 863, 689± 0 8.10 7.07 0.49 −91.25%

Conjugate 5 (4/5) 3, 229, 871± 2, 869, 910 7.15 6.80 0.42 −94.64%
Gradient ch 24 (4/5) 2, 005, 146± 1, 410, 845 −0.01 0.01 −0.01 98.08% −70.19%

34 2, 957, 468± 1, 974, 483 0.01 0.03 −0.02 −40.11%
Cholesky 24 16, 288± 9, 853 0.00 −0.01 0.01 83.27% −71.09%

Decomposition pl 53 11, 316± 5, 253 - - - -

16

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

C. Algorithms for Efficient Kernel Matrix Inversion
The inverse of a kernel matrix can be expressed as a system of linear equations KX,X · [KX,X]−1 = I which can be solved
to obtain the inverse. Nevertheless, implementations of Gaussian process regression (GPR) do not directly solve for the
inverse but rather for the more efficient matrix product of the inverse with the target variable. Using the kernel matrix KX,X

and the target variable vector y, we can formulate the system of linear equations KX,X · s = y.

When rearranging the term to s = [KX,X]−1y, we obtain the right side of the predictive mean from Equation (2) by the
solution vector s. Similarly, this approach can be applied to formulate a system S = [KX,X]−1KX,X∗ to obtain the right
sight of Equation (3) of the predictive covariance. In contrast to the system of the predictive mean, the solution S of the
system of the predictive covariance is a matrix consisting of as many solution vectors si, as test points exist in X∗.

C.1. Cholesky Decomposition

Those systems can be efficiently solved if decomposing KX,X in a triangular system, as we can then leverage forward and
backward substitution to obtain the solution vectors.

The Cholesky decomposition is the most popular method for inverting kernel matrices in GPR. It takes advantage of the
symmetry and positive definiteness of the kernel matrix, thus reducing the number of arithmetic operations required. The
Cholesky decomposition is a type of LU factorization, where U = LT . It decomposes the kernel matrix KX,X into a lower
triangular matrix L and an upper triangular matrix LT , such that L ·LT = KX,X . This process requires O(16n

3) complexity.
In total, we obtain O(16n

3) for the Cholesky decomposition and O(n2) for the forward and backward substitutions, the latter
being applied each one time for the predictive mean (independent of the number in test points). However, for the predictive
covariance, we apply forward and backward substitutions each time for any test point. Forward and backward substitution
are dominated by multiplications and additions.

The Cholesky decomposition is a fundamental element of any real-world GPR implementation and the common default
implementation. Alternative methods to the Cholesky decomposition can be considered, yet they are not commonly used.
For instance, the LDL decomposition can be viewed as an extension of the Cholesky decomposition and eliminates costly
and potentially numerically unreliable square-root operations. However, it adds overhead by introducing a unit diagonal into
the factorization (Bunch & Kaufman, 1977). The Bunch-Kaufman factorization builds on the LDL decomposition by adding
a permutation matrix to increase numerical stability (and adds further overhead) (Bunch & Kaufman, 1977). The Singular
Value Decomposition (SVD) can invert the kernel matrix if it is nearly singular. However, it is not as memory and runtime
efficient as the Cholesky decomposition. The Cholesky decomposition is the most efficient method for GPR, and the kernel
matrix is usually considered sufficiently conditioned, so these alternatives are rarely used. The Cholesky decomposition is
known to be a numerically stable process, and in the case of infinite arithmetic, the kernel matrix always has a Cholesky
decomposition (Golub & Loan, 2013). The exploration of these alternatives could serve as a direction for future research,
aiming to further reduce the required minimum precision for the Cholesky decomposition.

Algorithm 1 presents the implementation of GPR using the Cholesky decomposition according to Rasmussen & Williams
(2006). The Cholesky-Banachiewicz algorithm (Banachiewicz, 1938) is used on line 1 to build the lower triangular matrix
row by row. Each lower triangular element is derived by first taking the equivalent element from the original matrix. If it is a
diagonal element, we subtract the sum of the squared elements in the same row of L left to the diagonal element before
taking the square root of the term. If it is not a diagonal, we subtract the sum of the products of each element of the same
row to the left of L and the element of the same column from the above row. We divide the term by the diagonal element of
the same column. Intuitively, this process is sometimes compared to completing the square for polynomials or calculating
the square root of a matrix. The vast amount of arithmetic operations consists of the multiplications and additions in line 13
and is dependent on the size of the kernel matrix. Other implementations, such as the Cholesky-Crout algorithm (Crout,
1941), take a column-by-column approach, which does not change the required number (or type) of arithmetic operations.

Common high-level library implementations for GPR (e.g., scikit-learn) use a block version (Golub & Loan, 2013)
of the Cholesky decomposition that is highly efficiently implemented in LAPACK (DPOTRF), also leveraging BLAS
operations. This introduces computational overhead but leverages modern hardware architecture for efficiency gains through
parallelization. Independent of the respective implementation or extension, the overall complexity of the algorithm is
always the same. For operation counting, we considered the Cholesky-Banachiewicz algorithm as a representative and
well-analyzable implementation of the Cholesky decomposition without any unnecessary overhead. Insights regarding
stability, performance, and energy savings with low-precision arithmetic translate directly into the widely used block version.

17

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Algorithm 1 Gaussian Process Regression with the Cholesky–Banachiewicz Decomposition (Rasmussen & Williams, 2006)
Require: Training features X , training target vector y, (one) test feature x∗

1: L← cholesky(KX,X)
2: α← LT \(L\y))
3: v← L\Kx∗,X

4: f̄∗ ← KT
x∗,X

α

5: cov[f̄∗]← Kx∗,x∗ − vTv

6: function cholesky(K)
7: L← 0 # initialize L as zero matrix of same dimensions as K
8: n← rows(K) # number of rows in K
9: for i = 0 to n do

10: for k = 0 to i do
11: sum← 0
12: for j = 0 to k − 1 do
13: sum← sum + L[i][j] · L[k][j]
14: end for
15: if i = k then
16: L[i][k]←

√
K[i][i]− sum

17: else
18: L[i][k]← 1

L[k][k] (K[i][k]− sum)

19: end if
20: end for
21: end for
22: return L

We apply the forward and backward substitutions (’\’) in line 2 for the predictive mean, while the predictive variance in line
3 needs forward substitution for every test point. Algorithm 1 only utilizes inference for a single test point x∗ for simplicity.
We have written x∗ as a scalar in the pseudocode, implying an isotropic RBF kernel. Finally, we use α and v to obtain the
predictive mean in line 4 and predictive covariance in line 5. Algorithm 1 illustrates that multiplications, additions, and
subtractions are the majority of arithmetic operations in the Cholesky decomposition, followed by divisions and the square
root operation.

While the influence of round-off error due to low-precision floating-point representations for GPR is empirically evaluated
in this work, theoretical round-off error bound analysis for the Cholesky decomposition with floating-point arithmetic were
derived (Martin et al., 1965; Wilkinson, 1966), sharpened, and extended by several authors (Meinguet, 1983; Kiełbasiński,
1987; Higham, 1990; Sun, 1992; Higham, 2002). While they do not tell the influence of round-off error on GPR performance
and only give worst-case bounds, they give hints about what contributes to GPR quality eventually.

Martin et al. (1965) bound the additive error matrix F in LLT = K + F by its spectral norm ||F ||2. They bound the error
by

||F ||2 ≤ ϵ · n3/2 · 2−t · ||K||2, (8)

where t is the number of mantissa bits, n is the rank of K, and ϵ is an error factor induced by rounding. They assume the
error ϵ to be around unity when using Round Half To Even, hence not being a significant overall error source. The most
important implication from this upper error bound is that the Cholesky decomposition might be robust to round-off error.
Furthermore, not only does the precision (2−t) have an impact on the error but also the conditioning of the matrix K and the
size of the kernel matrix (hence the size of our training data).

C.2. Conjugate Gradient

The Cholesky decomposition focuses on solving the introduced systems of linear equations by decomposing the kernel
matrix into a triangular system and applying forward and backward substitutions. The conjugate gradients approach focuses
on iteratively solving the same systems of linear equations.

The conjugate gradient algorithm can be used to precisely solve the linear system of equations. The precise solution can be

18

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Algorithm 2 Conjugate Gradient for Gaussian Process Regression (Hestenes & Stiefel, 1952; Davies, 2005; Maddox et al.,
2022)

1: Input: Kernel matrix K, right hand side vector v, maximum iterations i
2: Initialize: k ← 0, x0 ← 0, r0 ← Kx0 − v, d0 ← −r0
3: while k < i do
4: αk ← rTk rk

dT
k Kdk

5: xk+1 ← xk + αkdk

6: rk+1 ← rk + αkKdk

7: βk+1 ←
rTk+1rk+1

rTk rk

8: dk+1 ← −rk+1 + βk+1dk

9: k ← k + 1
10: end while

achieved by conducting iterations equal to the rank of the kernel matrix, which corresponds to the number of training data
observations. While the approach has the same computational overall complexity of O(n3) as the Cholesky decomposition,
it is computationally more expensive in absolute terms.

A conjugate gradient approach for GPR was suggested by Gibbs and McKay (1997) and was further developed by
Davies (Davies, 2005). It has been implemented in libraries such as GPytorch (Gardner et al., 2018). When using the
conjugate gradient in the context of GPR, it is generally assumed that a satisfactory approximation of the solution to the
linear system can be obtained in fewer than the full number of iterations. Conjugate gradient reduces the complexity of
inversion to O(n2 · i) if we terminate the conjugate gradient algorithm after i iterations. Reducing the iterations helps
to reduce runtime and balance performance with the computing power and energy used. However, the same number of
iterations will not always produce the same performance for different kernel matrices. The conditioning of the matrix is a
key factor in determining how many iterations are needed to achieve a certain level of approximation, as the number of
iterations is proportional to the square root of the condition number (Davies, 2005).

Algorithm 2 presents the vanilla conjugate gradient approach. The conjugate gradient algorithm comprises the solution
vector x, the residual vector r, and the search directions d as its fundamental components. The current iteration is tracked
by variable k and checked against the maximum number of iterations specified in i. After finishing the desired number of
iterations, the solution is in vector x. The generic right-hand side v is occupied by y for the predictive mean or by the
appropriate vectors for the predictive covariance.

We typically start with x being the zero vector and incorporate the residual vector r into our search direction d. Each of
these vectors is modified in each iteration of the algorithm. The vector x is updated according to the search direction d and
the scaling factor α, which is the optimal step size. The scalar α includes information about the magnitude of the current
residual error (how far do we have to go to reduce the error) and about the alignment of the current search direction with the
function curvature of matrix K applied on d (how does the shape in K affect the change in error for the search direction).

The residual is adjusted based on its previous value, the step size, and the search direction altered by the matrix K. The
search direction is then modified based on the new residual and the previous search direction, with β applied. The term
conjugate in conjugate gradient is derived from the fact that a search direction is always K-orthogonal to prior search
directions. A search direction d is K-orthogonal for a matrix K if dT

i Kdj = 0 (Shewchuk, 1994). The scalar β guarantees
that the new search direction is K-orthogonal to the previous search directions.

While it is known that a smaller condition number leads to faster conjugate gradients performance, Greenbaum et al. (2021)
investigated the convergence characteristics of various conjugate gradients implementations when using finite precision
arithmetic (meaning double-precision versus infinite precision). The authors demonstrate that the spread of eigenvalues
is the primary element that influences the speed of exact conjugate gradient convergence, and it determines how quickly
conjugate gradients converge when using finite precision. In addition to the vanilla conjugate gradients implementation
of Hestenes & Stiefel (1952), which was discussed in Algorithm 2, they examine the conjugate gradient algorithm by
Chronopoulos & Gear (1989) for improved parallelization and a pipelined version of Ghysels & Vanroose (2014). The
classical conjugate gradients implementation needed the least or a similar amount of iterations for the test problems (which
differed in their conditioning).

19

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Algorithm 3 Modified Conjugate Gradient for Gaussian Process Regression (Maddox et al., 2022)
1: Input: Kernel matrix K, right hand side vector v, iterations i, preconditioner matrix P−1

2: Initialize: k ← 0, x0 ← 0, r0 ← Kx0 − v, d0 ← r0, z0 ← P−1r0, log(γ0)← logSumExp(rT0 z0)
3: while k < i do
4: αk ← exp(log(γk)− logSumExp(dT

kKdk))
5: xk+1 ← xk + αkdk

6: rk+1 ← rk + αkKdk

7: for j = 0 to k do
8: rk+1 ← rk+1 − (uT

j rk+1)uj

9: end for
10: zk+1 ← P−1rk+1

11: log(γk+1)← logSumExp(rTk+1zk+1)
12: βk+1 ← exp(log(γk+1)− log(γk))
13: dk+1 ← −rk+1 + βk+1dk

14: uk+1 ← dk+1

15: k ← k + 1
16: end while

Greenbaum et al. defined machine error for a matrix as a perturbed matrix whose eigenvalues lie within certain intervals
around the original eigenvalues. Greenbaum (1989) had previously shown that, under certain assumptions, the convergence
behavior of conjugate gradients of a perturbed matrix is similar to that of a matrix whose eigenvalues are located in small
intervals around the eigenvalues of the original matrix. The eigenvalue distribution and the size of the intervals determined
by the machine error can prolong the convergence of the conjugate gradients method compared to the original matrix.

Greenbaum et al. (2021) formalized theoretical upper bounds δ for the residual vector rk and the search direction vector dk

for one iteration step that we can use to determine important factors for our work with (low) finite precision. The spectral
norm for a matrix and the L2 norm for a vector is denoted by || · || , c is a constant, and ϵ is the maximum relative error. The
upper bounds for the residual vector ||δrk || and the search direction ||δdk

|| are

||δrk || ≤ ϵ · (||rk−1||+ 2||αk−1Kdk−1||+ c||K|| ||αk−1dk−1||) +O(ϵ2) (9)

and
||δdk

|| ≤ ϵ · (||rk||+ 2||βkdk−1||) +O(ϵ2). (10)

In addition to the error caused by the floating-point precision, we observe that the conditioning of K or its related terms
plays an important role in the bounds. The spectral norms either contain K or implicitly depend on K. The value of
a matrix’s conditioning number is directly related to its spectral norm. Thus, poor conditioning leads to higher upper
error bounds. The conditioning of the other conjugate gradients terms in the error bounds eventually depends on K.
Overall, the implications are similar to the upper bounds for the Cholesky decomposition. Besides the round-off error ϵ, the
conditioning significantly influences the eventual error. Furthermore, both scale each other by multiplication. Finding the
right floating-point representation for practical applications is not straightforward from those bounds, necessitating empirical
trials. The upper limits, however, give us useful information.

The conjugate gradients approach exhibits matrix-vector operations (multiplications and additions) as dominating operations
dependent on the kernel matrix size and number of performed iterations.

Maddox et al. (2022) introduced the modified conjugate gradients algorithm presented in Algorithm 3, which we employed.
They used matrix-vector operations in half-precision to process larger datasets, allowing bigger kernel matrices. They
employed several measures to improve the robustness of GPR during half-precision computation. To prevent round-off
errors and overflows, they implemented three modifications.

They decreased the chance of exponent overflows by rescaling the kernel matrix-vector multiplications. The vector is
downscaled by factor 1√

n
, where n is the rank of K. This has an impact on the calculations of the residual rk+1 on line 6

and the alpha value αk on line 4 (as well as their initial values).

20

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Second, they store and calculate α and β (lines 4, 11-12, and initialization) using a logarithmic scale and then convert it
back to linear scale for their respective applications in the solution, residual and search direction vectors. Storing in the
logarithmic scale downscales large values. It upscales subnormal values, thus reducing over- and underflows and improving
the round-off error of calculations.

Maddox et al. (2022) calculate the product of two vectors a and b using the LogSumExp function by computing
logSumExp(aT · b) = ymax + log(

∑n
i=1 si · exp(yi − ymax)), where yi = log(ai) + log(bi) and si = sign(ai · bi)

with ai and bi denoting the vector elements. On the one hand, ymax downscales the products of the individual vector
elements by the largest product, thus increasing the accuracy and preventing large values from being lost in the final sum.
The addition of ymax to the full terms scales it back.

To illustrate the differences, consider the term p·z
q = exp(log(p) + log(z))− log(q) with p = z = q = 1× 10−250. While

in mathematics with infinite precision, these terms are equivalent, resulting in a value of 1× 10−250, double-precision
causes the nonlogarithmic representation to be 0, as the term p · z causes an underflow.

As the third measure, they employ Gram-Schmidt re-orthogonalization in each iteration (lines 7-8) to maintain the
orthogonality of the residual vectors to any previous residual vector ui that may have been lost due to the round-off
errors from the kernel matrix multiplications, as suggested by Gratton et al. (2021).

The condition number of the kernel matrix largely determines the number of iterations needed for convergence. To decrease
the condition number and thus the speed of convergence, they used a preconditioner P−1. In our experiments, we did not
include the preconditioner application.

21

