
Errata: Proof of Lemma C.2

There is a major flaw in the proof of this lemma. At the bottom of this page, it is
argued that Theorem A.116 proves that the probability that a binomially distributed
variable with mean of at least ε exceeds a value of mε

2 is at least 1
2 . This is wrong.

In order to prove this statement we need a different theorem. In the official errata
we give a short proof of this statement using Theorem A.110 which, unfortunately,
makes the condition mε > 2 slightly worse (mε > 8). Here, we give a longer proof
due to Mingrui Wu which shows the desired result from first principles.

Theorem 0.1 (Binomial mean deviation bound) Let X1, . . . , Xn be independent
random variables such that, for all i ∈ {1, . . . , n}, PXi (Xi = 1) = 1 −
PXi (Xi = 0) = EXi

[
Xi

] = µ. Then, for all ε ∈ ( 2
n , µ

)
we have

PXn

(
1

n

n∑
i=1

Xi ≥ ε

2

)
>

1

2
.

Proof Since µ > ε it suffices to show

PXn

(
1

n

n∑
i=1

Xi ≥ ε

2

)
≥ PXn

(
1

n

n∑
i=1

Xi ≥ µ

2

)
>

1

2
,

assuming that nµ > 2. This statement is equivalent to

PXn

(
n∑

i=1

Xi <
nµ

2

)
≤ 1

2
. (1)

Let l be the largest integer such that l <
nµ

2 . Since µ ∈ [0, 1] and n is an integer
we know that 2l + 1 ≤ n. Note that S := ∑n

i=1 Xi is binomially distributed with
parameters n and µ (see Table A.2). Thus, (1) is equivalent to

l∑
j=0

(
n

j

)
µ j (1 − µ)n− j ≤ 1

2
. (2)
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Case 1: µ > 1
2 In this case µ > 1 − µ and for j ∈ {0, . . . , l} we have j < n − j

so it follows that(
n

j

)
µ j (1 − µ)n− j <

(
n

j

)
µn− j (1 − µ) j =

(
n

n − j

)
µn− j (1 − µ) j .

Hence, double summation of (2) gives

2
l∑

j=0

(
n

j

)
µ j (1 − µ)n− j <

l∑
j=0

(
n

j

)
µ j (1 − µ)n− j +

n∑
j=n−l

(
n

j

)
µ j (1 − µ)n− j

≤
n∑

j=0

(
n

j

)
µ j (1 − µ)n− j = 1 , .

Case 2: µ ≤ 1
2 By assumption nµ > 2 and thus l ≤ n

4 and n > 4. In the rest of the
proof we will show that

∀ j ∈ {1, . . . , l} :
(

n

j

)
µ j (1 − µ)n− j <

(
n

j + l

)
µ j+l (1 − µ)n− j−l , (3)

(1 − µ)n <

(
n

2l + 1

)
µ2l+1 (1 − µ)n−2l−1 . (4)

Using these two results, (2) can be seen to hold by noticing that (3) and (4) imply

l∑
j=0

(
n

j

)
µ j (1 − µ)n− j =

l∑
j=1

(
n

j

)
µ j (1 − µ)n− j + (1 − µ)n

<

2l+1∑
j=l+1

(
n

j

)
µ j (1 − µ)n− j .

Hence, double summation of (2) again gives

2
l∑

j=0

(
n

j

)
µ j (1 − µ)n− j <

2l+1∑
j=0

(
n

j

)
µ j (1 − µ)n− j

≤
n∑

j=0

(
n

j

)
µ j (1 − µ)n− j = 1 ,

where we used the fact that 2l + 1 ≤ n. It remains to show (3) and (4). In order to
prove (3) we divide the right hand side by the left hand side. For the j th term this
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results in( n
j+l

)
µ j+l (1 − µ)n− j−l(n

j

)
µ j (1 − µ)n− j =

l∏
t=1

µ

1 − µ
· n − j − l + t

j + t

≥
l∏

t=1

µ

1 − µ
· n − 2l + t

l + t

=
l∏

t=1

µ

1 − µ

(
1 + n − 3l

l + t

)

≥
l∏

t=1

µ

1 − µ
· n − l

2l

=
(

µ

1 − µ
· n − l

2l

)l

>

(
µ

1 − µ
.
n − nµ

2

nµ

)l

=
(

1 − µ

2

1 − µ

)l

> 1 ,

where we used j ≤ l in the second line, t ≤ l and n − 3l ≥ 0 in the third line and
l < nµ

2 in the penultimate line. In order to show (4) we assume l ≥ 1; otherwise
the statement follows easily. Again, dividing the right hand side of (4) by the left
hand side of (4) we obtain

( n
2l+1

)
µ2l+1 (1 − µ)n−2l−1

(1 − µ)n

=
2l+1∏
t=1

µ

1 − µ
· n − 2l − 1 + t

t

=
(

2l∏
t=2

µ

1 − µ
· n − 2l − 1 + t

t

)(
n (n − 2l)

2l + 1

(
µ

1 − µ

)2
)

>

(
2l∏

t=2

µ

1 − µ
· n − 1

2l

)(
n (n − nµ)

2l + 1

(
µ

1 − µ

)2
)
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=
(

nµ − µ

2l − 2lµ

)2l−1 ( n2µ2

(2l + 1) (1 − µ)

)

>

(
2l − µ

2l − 2lµ

)2l−1 ( n2µ2

2l + 1

)

>

(
2l − µ

2l − 2lµ

)2l−1 ( n2µ2

nµ + 1

)
> 1 ,

where the third and fifth line uses t ≤ 2l < nµ and the last line uses nµ > 2.

The theorem is proven.


